Received: February 14, 1984; accepted: April 20, 1984

BIS(PERFLUOROALKYL AND ARYL SUBSTITUTED ACETYLACETONATE)BERYLLIUM(II) CHELATES

DANIEL T. HAWORTH

*Department of Chemistry, Marquette University, Milwaukee, WI 53233 (U.S.A.)

MANORANJAN DAS#

School of Chemistry, University of New South Wales, Kensington, N.S.W. 2033 (Australia)

SUMMARY

The synthesis of eight beryllium chelates having substituted betadiketone ligands, RCOCH₂COR', is reported (R=methyl, 2'-thienyl, 2'furyl, phenyl; R'=CF₃, C₂F₅, C₃F₇). ¹³C, ¹⁹F and ¹H NMR spectra data are compared to give a shielding order. These four-coordinate pseudotetrahedral complexes of idealized C₂ symmetry all give a more deshielded ring carbon than the corresponding ring carbon resonances of the same ligand in four-coordinate square planar complexes. Some dipole moment data are also presented.

#Present address: Chemistry Department, University of Zambia, Lusaka (Zambia).

© Elsevier Sequoia/Printed in The Netherlands

0022-1139/84/\$3.00

INTRODUCTION

We have recently reported on the synthesis, characterization of fluorinated- β -diketonate chelates of six-coordinate aluminum, gallium, indium, scandium, eight-coordinate zirconium, and four-coordinate palladium [1-5]. The latter complexes are square planar and exist as both cis and trans isomers. A literature survey of four-coordinate tetrahedral complexes of beryllium with unsymmetrical fluorinated- β -diketone ligands indicates that only the bis(1,1,1-trifluoro-2,4-pentanedionato)beryllium(II) and the bis(1,1,1-trifluoro-2,4-(2'-thienyl)propanedionato)beryllium(II)) compounds have been reported. Work on these compounds includes their gas phase[6,7] and gel chromatographic [8–10] behavior, solvent extraction [11-14], stability constant determination [15] and sublimation studies [16]. Some ¹H NMR data has also been recorded [17].

We now report the synthesis and characterization of eight bis(fluorinated- β -diketonate)beryllium chelates, Be(RCOCHCOR')₂, of which six of these compounds are novel.

EXPERIMENTAL

Preparation of the β-diketones

The β -diketones (RCOCH₂COCF₃) with R as methyl, phenyl and 2'-thienyl were obtained from the commercial sources. Other β -diketones were prepared by Claisen condensation of the methyl ketone (RCOCH₃) and ethyl fluorocarboxylates (R'COOC₂H₅), catalyzed by sodium methoxide [18].

Preparation of the complexes

A solution of beryllium sulfate tetrahydrate (1 g; 5.65 mmol in 25 mL water) was added to the solution of β -diketone (11.3 mmol in 35 mL alcohol). The pH of the mixture was raised to about 5 by adding concentrate NH3 and the solution was digested for 10-15 min. The mixture after cooling in an ice bath for 1 h yielded a white product which was filtered and washed with ice-cold 50% alcohol/water.

The metal was determined by decomposing a 300 mg sample with five drops of concentrated $\rm H_2SO_4$ and then strongly heating to BeO.

NMR data

The NMR spectra were recorded in CDC1₃ with the ¹⁹F and ¹³C NMR spectra taken on a JEOL-FX60Q NMR Spectrometer and the ¹H NMR spectra taken on a Varian EM360L NMR Spectrometer. The ¹³C NMR chemical shifts (ppm). The ¹⁹F NMR spectra were run at 56.3Hz with broad band decoupling using a sweepwidth of 15,150Hz and an internal reference of CFC1₃. The carbon resonances of the C₃F₇ group were studied using a fluorine noise decoupling technique, ¹³C{¹⁹F}, as previously described elsewhere [4]. Dipole moment data

The dipole moments were determined at 25°C in benzene dried with BDH molecular sieves (Type 4A) using a WTW dipolemeter and an Abbe 60 refractometer [19].

Molecular weight data

Molecular weights were determined in benzene by the Galbraith Laboratories, Inc.

RESULTS AND DISCUSSION

The reaction of beryllium sulfate tetrahydrate (BeSO₄·4H₂O) with the respective fluorinated- β -diketone afforded yields of the beryllium chelates of *ca* 50% or better except for the Be(CH₃COCHCOCF₃)₂ (18.4%) and Be(2'-C₄H₃SCOCHCOCF₃)₂ (28.5%) compounds. The analytical data for these compounds are presented in Table I. These BeL₂ complexes are highly soluble in absolute ethanol and other organic solvents.

Table I also shows dipole moment data for four of these compounds.

-	
щ	
<u>B</u>	
È.	

Analytical and dipole moment data of Be(RCOCHCOR') $_2$ chelates

		МР	Yield	%Found			%Calcul	ated		Dipole
×	-R	ູ	3 9	J	т	Be	U	т	Be	Moment (Debye)
methyl	CF3	110-112	18.4	38.08	2.68	3.03	38.10	2.56	2.86	4.28(2.55)*
phenyl	CF3	138-140	49.3	54.55	2.83	1.88	54.69	2.76	2.05	5.29(3.07)*
2'-thieny]	CF3	167-169	28.5	42.49	2.07	2.10	42.57	2.23	2.00	5.74(3.57)*
2'-furyl	CF3	172-173	47.5	45.73	2.01	2.07	45.84	1.92	2.15	6.05
phenyl	C2F5	141-142	52.5	49.01	2.29	1.79	49.00	2.24	1.67	t 1
2-thieny]	C2F5	171-172	54.9	39,09	1.47	1.73	39.21	1.46	1.63	1
phenyl	C3F7	110-113	50.8	44.95	2.06	1.09	45.10	1.89	1.41	ł
2-thienyl	c3F7	99-101	52.4	36.86	1.31	1.32	36.87	1.24	1.38	1
* The values in parent	chesis are	the dipole n	noments of	the zinc	comple	xes of th	e corresp	onding	ligand,	

RCSCHCOCF₃ [29]. The dipole moment of $Zn(CH_3CSCHCOCF_3)_2$ was reported by mistake in reference 29 as 3.37D. The correct value is 2.55D. The parent compound, $Be(acac)_2$, has been shown by X-Ray crystal [20,21] and molecular beam [22] studies to have a slightly distorted pseudotetrahedral D_{2d} structure. $Be(acac)_2$ has zero dipole moment in the gas phase and a moments of 1.17D and 0.77D have been reported in benzene [23-25]. The lack of a nonzero dipole moment in the centrosymmetric $Be(acac)_2$ chelate has been attributed to anomalously high atom polarizations [24]. It has also been suggested that symmetry destroying low-lying vibrational modes may be responsible [26,27]. The dipole moments of the four compounds reported in Table I are due to the two unsymmetric bidentate ligands arranged in a pseudo-tetrahedral environment plus the possibility of some contribution from the above described effects. Our dipole moment value of $Be(CH_3COCHCOCF_3)_2$ agrees with that reported by Holm and Cotton, 4.25D [28]. The formal symmetry of the beryllium complexes reported herein is lowered from the D_{2d} symmetry of $Be(acac)_2$ to C_2 , thus rendering these chelates dissymmetric.

Table I also shows dipole moment data for zinc complexes of the monothio- β -diketone ligand, RCSCH₂COCF₃, where R is methyl, phenyl or 2'-thienyl. While both metal complexes have pseudo-tetrahedral geometry, the BeO₄ core complexes have a higher dipole moment than their corresponding ZnS₂O₂ core complexes. The lower dipole moment of the ZnS₂O₂ core complexes are a result of the lower electronegativity of sulfur versus oxygen and/or the larger size of zinc compared to that of beryllium; covalent radii, 1.31Å and 0.9Å, respectively. The possibility of polymerization of the BeL₂ chelates can be discarded as the compounds Be(CH₃COCHCOCF₃)₂ and Be(C₆H₅COCHCOCF₃)₂ gave molecular weights (benzene) of 315 and 430 as compared to the respective theoretical values of 315 and 439.

Table 2 presents 13 C NMR chemical shift and coupling constant data for the R-<u>C</u>-O, <u>C</u>-H and R'-<u>C</u>-O carbons. Several observations are apparent from this data and it agrees with 13 C NMR chemical shift data taken

335

TABLE 2

 13 C NMR chemical shift (ppm) and coupling constant (Hz) data for Be(RCOCHCOR')₂ chelates

Ra	R'	R- <u>C</u> -0	<u>с</u> -н ^ь	R'- <u>C</u> -0 ^C
CH3	CF3 ^d	201.0	97.9(2.0)	171.6(35.6)
C ₆ H ₅	CF3	190.8	93.8(2.0)	172.6(35.6)
2'-C4H3S	CF3	183.3	93.7(2.1)	171.5(35.6)
2'-C4H30	CF3	178.4	93.4(2.3)	172.2(35.6)
C ₆ H ₅	C ₂ F ₅ e	190.3	95.4(2.5)	173.7(25.6)
C ₆ H ₅	C ₃ F7 ^f	190.3	95.6(3.4)	173.7(25.1)
2'-C4H3S	C ₂ F ₅	182.8	95.2(2.9)	172.5(25.4)
2'-C4H3S	C ₃ F7	182.8	95.5(3.5)	172.5(25.6)

^a <u>CH₃</u>, 27.4 ppm; <u>C₆H₅</u>, 134.6, 134.2, 128.6(2x) ppm; 2'-<u>C</u>₄H₃S, 140.6, 135.9, 133.8, 128.6 ppm; 2'-<u>C</u>₄H₃O, 150.5, 148.1(2x) ppm.

^b $^{3}J_{C-F}$, quartets for CF₃, triplets for C₂F₅ and C₃F₇.

 $^{\rm C}$ 2 J_{C-F}, quartets for CF₃, triplets for C₂F₅ and C₃F₇.

d <u>CF3</u>: 118.2 ppm, J_{C-F} 281.4Hz.

- e C_2F5:CF2, 108.7 ppm, $^{1}J_{C-F}$ 242.2Hz (t), $^{2}J_{C-F}$ 38.4Hz (q); $\underline{^{C}}F_{3}$, 118.1 ppm, $^{1}J_{C-F}$ 298.1Hz (q), $^{2}J_{C-F}$ 35.6Hz (t).
- f C₃F₇: CF₂CF₂CF₃, 110.2 ppm, CF₂CF₂CF₃, 109.3 ppm; CF₂CF₂CF₃, 117.4 ppm.

on similar ligands in various geometries [1-5]. The effect of the more electronegative perfluoroalkyl group (R') causes the resonance of the carbonyl carbon adjacent (R'- \underline{C} -0) to the R' group to be more shielded than the carbonyl carbon's resonance of the R' substituent (R'- \underline{C} -0). Spin-spin coupling to the methine carbon (\underline{C} -H) and the R'- \underline{C} -0 carbonyl carbon resonance is observed only for the fluorine of the CF₃ and the

336

CF₂ fluorines of the perfluoroethyl (CF_2CF_3) and perfluoropropyl ($CF_2CF_2CF_3$) group. The R-C-O carbonyl carbon resonance is R-group dependent with the order of shielding being methyl<aryl<2'-thienyl<2'-furyl. This again appears to be an electronic effect. The methine (C-H) carbon resonance is more dependent on the R'-group than the R-group with the CF₃ group causing a more shielded resonance, except for CH₃ group (Rgroup), than the C₂F₅ or C₃F₇ groups.

The carbon resonances of the R and R'-group substituents are also shown in Table 2. The perfluoropropyl carbon resonances were lost in the baseline and as described in the Experimental, they were recorded by a $^{13}C\{^{19}F\}$ noise decoupling technique. By this technique the <u>C</u>-H resonance was recorded at 173.7 and 172.6 ppm for Be(C₆H₅COCHCOC₃F₇)₂ and Be(2'-C₄H₃SCOCHCOC₃F₇)₂, respectively, with $^{1}J_{C-H}$ 168.5Hz. These perfluoroalkyl carbon resonances are in agreement with our previous work [4].

¹⁹F NMR spectra data of the R' fluorines and the ¹H NMR spectra data of the methine proton are presented in Table 3. The CF₂ fluorines adjacent to the carbonyl carbon do not show spin-spin coupling for the C_2F_5 and C_3F_7 substituents. The ¹H NMR data for the C-<u>H</u> proton show a more deshielded resonance when R is phenyl or aryl as compared to a methyl substituent. This the reverse order of shielding for the <u>C</u>-H carbon resonance (Table 2).

Finally, a comparison of the ¹³C NMR chemical shift data of fourcoordinate beryllium chelates with four-coordinate palladium chelates having the identical ligands show a more shielded R-<u>C</u>-O and R'-<u>C</u>-O carbonyl carbon resonance for the tetrahedral-beryllium chelates versus the square planar-palladium chelates [5]; this shielding order has also been observed for monothio- β -diketonate chelates of tetrahedral-zinc and square planarnickel palladium and platinum complexes [31-35].

R	R'	С- <u>Н</u>	CF_3	CF2CF3	CF2CF2CF3
CH ₃	CF3	6.1	-76.3		
C6H5	CF3	6.8	-76.0		
2'-C4H3S	CF3	6.6	-75.9		
2'-C4H30	CF3	6.7	-76.1		
C6 ^H 5	C ₂ F ₅	6.8		-123.7,-83.2	
C6H5	C ₃ F ₇	6.8			-127.3, -121.4(9.2Hz
2'-C4H3S	C ₂ F ₅	6.6		-123.8,-83.2	q),-81.1(9.2Hz,t)
2'-C4H3S	C ₃ F ₇	6.6			-127.4,-121.5(9.2Hz, q),-81.1(9.2Hz,t)

¹H and ¹⁹F NMR chemical shifts of $Be(RCOCHCOR')_2$ chelates

The preparation of these new fluorinated substituted acetylacetonate beryllium chelates should promote an interest in studies of their chromatographic, solution and sublimation behavior. Of particular interest would be the resolution of the optical antipodes of these complexes as only the enantiomers of bis(1-phenyl-2,4-butanedionato)beryllium(II) have been separated on optically active quartz [36] and on the potassium salt of the heteropolyacid, $H_5[BW_{12}O_{40}] \cdot 28H_2O$ [37].

ACKNOWLEDGEMENT

This work was supported by the Marquette University Committee on Research.

TABLE 3

- 1 M. Das, J.W. Beery and D.T. Haworth, Inorg. Chim. Acta, 49 (1981) 17.
- 2 D.T. Haworth, J.W. Beery and M. Das, Polyhed., 1 (1982) 9.
- 3 D.T. Haworth and M. Das, Synth. React. Inorg. Met-Org. Chem., in press.
- 4 M. Das, J.W. Beery and D.T. Haworth, Synth. React. Inorg. Met-Org. Chem., 12 (1982) 671.
- 5 D.T. Haworth, M.R. Pitluck, B.D. Pollard and M. Das, Synth. React. Inorg. Met-Org Chem., 13 (1983) 601.
- 6 R.J. Majer, J. Sci. Tools, LKB Instrum., <u>15</u> (1968) 11; C.A., <u>69</u> (1968) 83008.
- 7 K. Tanikawa, K. Hirano and K. Arakawa, Chem. Pharm. Bull., <u>15</u> (1967) 915.
- 8 N.P. Rudenko, A.I. Sevast'yanov and N.G. Lanskaya, Zh, Neorg. Khim., <u>13</u> (1968) 1566.
- 9 K. Saitoh and N. Suzuki, Anal. Chem., 52 (1980) 30.
- 10 H. Noda, K. Saitoh and N. Suzuki, J. Chromatogr., 168 (1979) 250.
- 11 T. Sekine, Y. Koike and Y. Komatsu, Bull. Chem. Soc. Jap., <u>44</u> (1971) 2903.
- 12 A.F. Kuznetsov and A.I. Sevast'yanov, Radio Khimiya, 17 (1975) 214.
- 13 A.I. Sevast'yanov, I.L. Gorodetskaya and N.P. Rudenko, Khim. Vestn. Mosk. Univ., 12 (1971) 328.
- 14 T. Sekine, Yu Komatsu and M. Sakairi, Bull. Chem. Soc. Jap., <u>44</u> (1971) 1480.
- 15 N.P. Rudenko, A.I. Sevast'yanov and N.G. Lanskaya, Zh. Noerg. Khim., <u>13</u> (1968) 1566.
- 16 E.W. Bers and K.P. Reed, Anal. Chim. Acta, <u>42</u> (1968) 207.
- 17 A. Barabas, Rev. Roun. Acta, 17 (1972) 1997.
- 18 M. Das, Inorg. Chim. Acta, <u>48</u> (1981) 33.

- 340
- 19 M. Das, Transition Met. Chem., 5 (1980) 17.
- 20 V. Arirthalingam, V.M. Padmanabhan and J. Shanker, Acta Cryst., <u>13</u> (1960) 201.
- 21 G.J. BUllen, Acta Cryst., 10 (1957) 143.
- 22 I. Masahi, K. Iijima and S. Shibata, Koen Yoshishu-Bunshi Kozo Sogo Toronkai, (1979) 142; CA, 93 (1980) 58652.
- 23 I.E. Coop and L.E. Sutton, J. Chem. Soc., (1938) 1269.
- 24 A.E. Finn, G.C. Hampron and L.E. Sutton, J. Chem. Soc., (1938) 1254.
- 25 O.A. Osipov and V.M. Artemova, Dokl. Akad. Nauk. USSR, <u>133</u> (1960) 166.
- 26 J. MacQueen and J.W. Smith, J. Chem. Soc., (1956) 1821.
- 27 C.C. Meridith, L. Westland and G.F. Wright, J. Am. Chem. Soc., <u>79</u> (1957) 2385.
- 28 R.H. Holm and F.A. Cotton, J. Inorg. Nucl. Chem., 15 (1960) 33.
- 29 S.W. Filipczuk, J.W. Hayes, D.V. Radford, M. Das and S.E. Livingstone J. Chem. Soc. Dalton, (1976) 886.
- 30 B.F. Haskins and C.D. Pannon, Inorg. Nucl. Chem. Lett., <u>11</u> (1975) 405.
- 31 M. Das and D.T. Haworth, J. Inorg. Nucl. Chem., 43 (1981) 515.
- 32 D.T. Haworth, D.L. Maas and M. Das, J. Inorg. Nucl. Chem., <u>43</u> (1981) 1807.
- 33 D.T. Haworth and M. Das, J. Inorg. Nucl. Chem., 43 (1981) 3015.
- 34 M. Das and D.T. Haworth, Inorg. Chim. Acta, <u>64</u> (1982) L1115.
- 35 D.T. Haworth and M. Das, J. Fluorine Chem., 20 (1982) 487.
- 36 D.H. Busch and J.C. Bailar, J. Am. Chem. Soc., 76 (1954) 5352.
- 37 E. Ferroni, R. Cini and S. Biagini, Ann. Chim. (Rome), <u>53</u> (1963) 774.